Lessons learned and new questions for a team operating a Protontherapy facility

for Workshop on Accelerator Operations 2021 organized by ALBA

Samuel Meyroneinc Biomedical Technical and Enginering Service Centre de Protonthérapie – Orsay - France Institut Curie

8th October 2021

summary

1. Presentation of the protontherapy facility and missions of the team

2. What happened during the crisis

3. Some lessons learned and some new questions

1. Presentation of our facility

The Institut Curie Group is a dedicated cancer center working on treatment, and basic, translational, clinical research

Hospital Group (2100 pers)

- Paris Hospital
- Proton therapy center in Orsay (60 pers)
- - René-Huguénin Hospital in Saint-Cloud

≻Research Center (1100 pers)

15 units in Paris and Orsay which are associated with the CNRS, Inserm, and universities.

Translational Research Department

to the transfer of scientific innovations to the bedside to improve patient care and/or to research designed to improve understanding of cancer by performing preclinical studies.

6 20 March 2019

Institut Curie International Services

Centre de Protonthérapie d'Orsay

- > 1957 Research physical center
- > 1990: Creation of CPO (network)
- > 1991: 1st Ocular treatment
- 1 Room Fix. Line
- > 1993: 1st intracranial treatment
- 2 Rooms Fix. Lines
- > 2004: Integration
- into the Institut Curie
- > 2006 1st General Anesthesia
- > 2010 New cyclotron + 1 Gantry
- > 2011 1Gantry +2 rooms (Horiz line)
- 2019 11 000 fractions/year %PBS

Y1 Room: Intracranial tumors (Home made)

6

Centre de Protonthérapie d'Orsay

Examples of Treatment achieved

BASE OF SKULL TUMORS

Chordoma
 Chondrosarcoma
 Sarcoma
 (e.g. Ewing sarcoma, rhabdomyosarcoma)
 Salivary gland tumor
 (eg. Cystic adenoid carcinoma)
 Glomic tumor
 Nasopharyngeal carcinoma (boost)

How protontherapy works (for beam considerations)

Video (from IBA/youtube)

Operational Features

Typical day

6h30 - 7h30 technical startup and warm-up
2 days per week with 30 minutes of maintenances
7h30 - 8h30 Beam checks (by users)
8h30 - 19h15 - use for clinics (treatment or Quality Control) - 11 hours of operations for treatments

after 19h15 several options

Extra-time to finish the clinical activity (if case of large activity or delays during the days) evening session for Quality & Periodic Tests evening session for experimentations (physics, or mainly radiobiology in vitro or in vivo)

Typical week

5 days of operation Some saturday morning or week-end of maintenance

Typical year

52 weeks of treatment

Only 4 fridays + week-end for large quarterly maintenance sessions

Organic distribution of the Biomed-Tech-Ing team staff of 5 engineers and 8 technicians

kinds of activities		machine-lines	IT-control	mechanical	tt rooms	utilities
operation-production	3	2		1		
support	3	1	0,5	0,5	0,5	0,5
maintenance-consolidation	3,5	1,5	0,5	0,5	0,5	0,5
development	3,5	0,5	1,5	1	0,5	
	13					

Operations

Monitoring

Maintenances

Protocols to respect QA medical devices standards

Uptime of the facility of protontherapy: (% of patients treated the D day)

WAO facilties / Curie Protontherapy Facilty

Common features

Specific features

Accelerator

Operations-Maintenance

Including issues of the facilities

In order to optimize uptime

multi-users (% research)

Size (1,3 MWatt, staff tech : 13)

Shared contract of maintenance

within the Treatment process and wokflow

Low level of evolution since 10 years

2. What happened during the (pandemic) crisis

During the crisis

the treatment activity did not stop

the experimental activities were stopped till beginning of 2021

Sanitary rules

major impact on the process of patients for caregivers (bareer gestures, cleaning process, ...)

sollicitation for technical support (ex: design and realization of plastic visors)

Lockdown

what is the minimal personal on site ??
what are the essential preventives maintenances ??
slowdown and lack of reactivity of sub-contractors
% staff perturbated to be « pushed out » in remote work
opportunities: writing proceedures, debriefing on the optimization of team works, learning of the tools to work remotely, etc ...

Governance-Management

Hospital entity with crisis board meeting (daily, weekly) Information: a lot of information-instructions multi-channel

Uncertainties, Benevolence

Sanitar rules and required behaviours

1 more sly risk, where are the real risks ? paradoxal injonction: keep distances and do not work alone importance to keep real visits in the facilities to hear, smell, feel... opportunities to increase the remote control

Distancial et telework

opportunities: remote meeting, more capacity to interact with new people risks: invasion of private life (« blurring »),lower presence for reactivity

Management of crisis

circuit of decision and information (to rethink about) how keep detection on weak signals (systems, people) ? what is the level of empowerment for people for normal work during the crisis ?

What is the part of beer / part of foam during the crisis ? (real risks, real activity of people,...)

Some lessons learned and some (2) new questions

Lessons learned

. . . .

Operational people need to be on the field

We could have worked differently before (ex: remote tools)

Hospital is « wired » to live with the crisis

PCA (Plan for the Continuity of Activities) can be useful in some situations

Question #1

Principles of Management (Fayol)

Division of labor Authority Discipline Unity of command **Unity of direction Subordination** Remuneration (fair). Centralization Scalar chain. Order Equity. Stability. Initiative.

Henri Fayol (french engineer, 1841 – 1925)

Esprit de corps

Questions #1

How keep the « Esprit de corps » of a team with % of remote work ?

(Esprit de corps: team spirit ?, collective empowerment? , solidarity ?, etc)

What is the admissible ratio of % of remote work ?

What are the ways to compensate ? To optimize ?

Questions #2

About sly risks: an increasing panorama

Risk	sly ?	Rare ?	informations	training
Covid	yes	No then yes	High	No
Radiations	Yes	no	High	Yes
Electricity	Partly	No	Medium	Yes
Magnetic field	Partly	No	Low	Low
Fire	no	Yes	Medium	Yes
Gaz (ex: SF6)	Partly	Yes	Low	Low
Biological	Partly	No	Low	Low
Terrorism-attack	No	Yes	Crisis	Yes
harassment	no	Yes ?	higher	Low

management of the sly risks

Risk	sly ?	Rare ?	informations	training
Covid	yes	No then yes	High	No
Radiations	Yes	no	High	Yes
Electricity	Partly	No	Medium	Yes
Magnetic field	Partly	No	Low	Low
Fire	no	Yes	Medium	Yes
Gaz (ex: SF6)	Partly	Yes	Low	Low
Biological	Partly	No	Low	Low
Terrorism-attack	No	Yes	Crisis	Yes
harassment	no	Yes ?	higher	Low

+ management of the risks of the potential failures

+ management of the risks on the medical operations and devices of treatments

reliability

Questions #2

- On the risk issues: what is the admissible mental load possible for operators, and managers ?
- How many different considerations of risks they can really integrate ? (in order to avoid mistake, non-considerations, burnout, ...)
- What are the ways to have realistic and sustainable principles ?

Thank you !

your position and feedback on these questions

other questions ? Discussions ?

